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ABSTRACT

This Semiannual Technical Summary covers the period 1 April

through 30 September 1981. It describes the significant results

of the Lincoln Laboratory Multi-Dimensional Signal Processing

Research Program, sponsored by the Rome Air Development

Center, in the areas of image segmentation and classification.

adaptive contrast enhancement, and target detection.
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MULTI-DIMENSIONAL SIGNAL PROCESSING

RESEARCH PROGRAM

1. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal Processing Research

Program was initiated in FY 1980 as a research effort directed toward the

development and understanding of the theory of digital processing of multi-

dimensional signals and its applications to real-time image processing and

analysis. A specific long-range application is the automated processing of

aerial reconnaissance imagery. Current research projects which support

this long-range goal are image modeling for segmentation, classification and

Starget detection, techniques for adaptive contrast emhancement, and multi-

processor architectures for implementing image-processing algorithms.

Results in these research areas over the past six months are described in

this Semiannual Technical Summary.

Section 2 summarizes the results of experiments with a non-supervised

segmentation algorithm. These results were first described in the RADC

Multi-Dimensional Signal Processing Program Quarterly Letter Report

dated 30 June 1981. Non-supervised image segmentation is a potentially im-

portant operation in the automated processing of aerial reconnaissance pho-

tographs since it permits the automatic segmentation of an image into regions

with similar content.

In Section 3, we summarize the results of recent experiments to enhance

aerial reconnaissance photographs degraded by thin cloud cover. Previous

work in this area was described in the preceding Semiannual Technical

Summary.

During this reporting period, we have begun a preliminary investigation

of approaches to the target-detection problem. In Section 4, we describe these

approaches and some simple computer simulated results. Automated target

detection is an important part of . 7m, i tM-d image-analysis system, and

we expect that our previous work in image modeling and segmentation will



provide a strong foundation for the development of robust target-detection

algorithms.

2. IMAGE SEGMENTATION

During the past six months, we have been developing a non-supervised

segmentation algorithm based on the supervised segmentation/classification

technique developed earlier and reported in Ref. 1. A supervised segmenta-

tion algorithm requires training data against which the actual data are com-

pared. Because the training data can be classified, the actual data can also

be classified as to type. A non-supervised segmentation algorithm, on the

other hand, does not require training data; it segments an image into regions

of similar content without classifying the regions into known categories.

During the current reporting period, we have been adapting our supervised

segmentation algorithm to work in a non-supervised mode. This is done by

using a clustering algorithm to automatically select training data to be used

in the supervised segmentation algorithm. The image to be segmented is

* first broken up into small squares. Then, measurements ("features") are!- made to distinguish between squares of different texture. Squares of similar

texture are grouped together to form a larger square which can be used as

training data. Details of this algorithmic approach to non-supervised seg-

imentation are given in the Quarterly Letter Report dated 30 June 1981.

3. ADAPTIVE CONTRAST ENHANCEMENT

In the previous Semiannual Technical Summary. we described in detail

several approaches to the problem of reducing the degradation caused in aerial

photographs by the presence of thin cloud cover. Several refinements to the

previously described enrhancement algorithms will be discussed in a forth-

coming Technical Report, Here, we shall summarize some of the conclusions

of the Technk.cal Report.

Through the use of a simple model to account for the effects of attenuation

and contrast reduction due to thin cloud cover, the degraded image can be

written as the product of a "signal" term and a *noise" term. Taking the

logarithm reduces the product to a sum so that conventional noise-reduction
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techniques can be applied. If it is assumed that the "signal" and "noise" are

stationary random processes, a Wiener filtering approach can be applied.

For images in general, the assumptions of stationarity and randomness

are suspect. While certain regions of an image (such as a forested area in

an aerial photograph) may be modeled reasonably well as stationary random

processes, it is rare that an entire image of interest can be so modeled.

Similarly, the effects of the cloud cover, the "noise," may vary across an

image and thus be non-stationary. Consequently, we have explored various

adaptive techniques based on a deterministic model of images. These tech-

niques operate independently on image sections which are formed by sliding

a pyramidal window over the original image. The sections overlap by a factor

of two in each direction. Because they operate on the sections independently,

these techniques can adapt to changes that occur across the entire image. We

have been experimenting with two promising techniques: an adaptive homo-

morphic algorithm, which applies a variable weighting to the Fourier trans-

form of the logarithm of an image section; and an adaptive highpass filter.

4. TARGET DETECTION

This component of our research relates to the problem of detecting tar-

gets in aerial photographs and is a direct outgrowth of our work in image

modeling, segmentation, and classification. We can loosely define the target-

detection problem as the detection of man-made objects in a textured back-

ground (e.g., trees, grass, fields, etc.).

Usually, in detection theory the target (or signal) is added to the back-

ground (or noise), and filtering procedures ar- well established for increasing

the signal-to-noise ratio. In image processing, however, the target pixels

replace the background pixels. We are currently investigating how this dif-

ference impacts algorithms which rely on a difference in intensity and/or

variance between the target and the background. A related problem is that of

detecting a small target (a few pixels in width) whose intensity and variance

do not differ significantly from that of the background, but whose correlation

characteristics do. We have focused our efforts on the design of target-

detection algorithms for this case.
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To facilitate our initial research efforts, we have abstracted the detection

problem by modeling the background texture as the output of a linear (and per-

haps slowly varying) filter with a white-noise input. More specifically, we

assume that output process is autoregressive. A deviation from this model

represents the presence of a target in the most general sense. The image

model is similar to that used in our image segmentation algorithm. As a

consequence, it has led to one particular approach to target detection based

on the error or "residual image" of this segmentation procedure.

This modeling approach has also sparked two other methods of target

detection. The first is based on a running spectral estimate and a running

phase estimate of the background process. The second and perhaps more

promising method relies on a recursive least-squares estimate of the back-

ground model parameters.

I We now outline the three target-detection algorithms which we are cur-

rently investigating.

4.1 Residual-Based Detection System

As a by-product of our segmentation algorithm, an "error" or residual

image is produced which reflects the amount of information left in the image

after the local texture has been removed. Small target-like areas appearing

in a texture field should manifest themselves in the residual image since they

represent disturbances or "errors" in the underlying texture pattern.

More specifically, it is important that the background residual be statis-

tically white. A target-detection algorithm would then consist of detecting

the presence and location of non-white anomalies (e.g., through a chi-squared

test) in the residual. Guaranteeing that the residual will be white, however,

is non-trivial and has led to some intriguing questions,

In particular, the whiteness requirement implies that the assumed auto-

regressive texture model must be based on a non-symmetric half-plane filter

mask.2 We have found, however, that to guarantee a white background residual,

this mask in general must be of an undesirably large extent, i.e.. larger than

the target sizes of interest. A typical whitening filter (based on a field-type

texture obtained from an aerial photograph) is shown bi Fig. 1. Thus. we have

4



Fig. 1. Typical non-symmetric
half-plane whitening filter.

jwhat might be called a "whiteness-resolution" trade-off. Another potential

problem with this approach is that the model makes an implicit assumption

of atationarity. Clearly, for real-world images, this assumption is ques-

tionable. A third potential problem with this approach is that the magnitude

of the residual error tends to be sensitive to the intensity of the target (e.g..

a low-intensity target will generate an error of small magnitude).

Nevertheless. although we have gained some imp)ortant theoretical insights

into thi nature of the use of the residual, we have only touched the surface.

For example, Williky's work 3 in detecting abrupt changes in non-atatlona:y

systema may very well be applicable and. moreover, help defeat the resolution

llimitations imposed by the size of the whitening filter.

4.2 Target Detection Based on Sliding Sýectrum
and Phase Estimates

In this technique, we compute (assuming the same model as before) the

Speriodogram of the signal under a sliding finite-extent window and compare

this spectral estimate with the true spwctral density. More specifically, we

denote the sampled periodogram at some time tu by Sin (k) and the sampled

true spectral density by S(k). (For simplicity, our analysis has been applied

to I-D signals.) We then form an error finction of the form

5



E E(m) = S(k)- S m(k)l(i

k

The basic idea is that, when a target lies under the analysis window, E(m) will

increase in magnitude. Peaks in E(m) should then indicate the presence of a

target. An example of this procedure applied to a 4-point target is illustrated

in Fig. Z(a-c), where a threshold is applied to E(m) resulting in detection of

three of the four target points.

One apparent problem with this approach is that S mk) tends to reflect

local changes in variance and mean level which do not reflect changes in

"I"texture" characteristics (i.e., the actual model parameters). One procedure

which seems less sensitive to such variations is to first convert S (k) to a
t phase" function. In particular, we have applied the Hilbert transform to the

log S i(k)), producing a (minimum-phase) phase function which is less sensi-

tive to DC or scaling changes in the original signal. An example, using a

mean-squared error function based on this running phase function, is dem-

onstrated in Fig. 3(a-b), where it is shown to obtain a better estimate -f the

target location than that from the running periodogramn.

Of course, oince those -nethods rely on knowledge of the background

specth'um S(k), th"tey may fail in distinguishing between a slowly varying non-

stationary background and a target. It might be prudent to modify V(m) to be

independent of SWk) by using a differenco of the form S 4nk) S -S i (k). Such
a difference may change radically only when anomalies in the data appear.

We are currently investigating this modified approach.

4.3 Target Detection by Recursive Least-Squares Filtering

In essence, the recursive least-squares algorithm "tracks" the model

parameters of the background. When a target area is reached, the paramneters
tend to change quickly, indicating the presence of a target. This approach is

similar in style to that of Dove and Oppnheiem.4 but iS applied here to stochastic.

rather than determini 'tc. pulse-like signals. Since this approach appears

at present to be the most promising of our detection schemes, we shall expend

some effort in describing the algorithm.
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Let us suppose that a 1-D sequence s(n) is generated by a difference equa-

tion of the form

p
•:s(n) = a(k) s(n -k)÷+w(n) (2)

k=i

where w(n) is white noise. The objective is to et•timate the model parameters

a(k) for k e (1, p] from s(n). Further, let us suppose that we have available a

segmerlt of s(n) for n in the interval [-p + n0 , ni], that is, nf - n0 + p + I data

points. We then define the error e(n) over the interval [n 0 , nil by

p
e(n) as(n)- Z a(k) s(n-k) n c [no, nI] (3)

"•k=1



The goal is to minimize the sum :)f th- squared errors given by

~nl

E[n4 ] = 3 e2 (n) (4)

ri=n

Performing this minimization (either through differentiation or the projection

theorem), we find a set of coefficients which will be denoted by the vector.f~J

If a new data point is given, i.e.. s(n 1 + 1), and an old one is eliminated,

i.e., s(n 0 - p), then the new data set runs from nO - p + 1 to n4 + 1. Clearly,

there is much redundancy between the old and the new data sets. This redun-

dancy motivates a recursive scheme for generating the new from the old co-

efficient estimates. This recursive algorithm can be shown to be given by

d[nI + I! Aa[n4] + G[n,] (ujn,] -vt in1 ] ýn]) (5)

where t denotes transpose, utn,] and v[n 1 ] are two matrices depending on

the new and the old data r'ets, and C[n1 ] is a gain matrix which is easily and

recursively updated.

"-luation (5) closely resembles the recursion associated with Kalman

,fitec-ing. In fact, viewing the coefficients a as states, under certain con-

ditions, RLS filtering is equivalent to Kalman filtering.

One way of judging the performance of the recursive estimate Eq. (5) is

to investigate the mean-squared error between the known coefficients and the

estimates:

Ain,] =(a - a1n,]) t (a -al1 (61

After an initial transient. ýJn,] should move toward a as long as the signal

obeys the model. If the signal suddenly deviates from the background because

of the presence of a target, the error A[an] should suddenly change to account

far the large error that would be encountered in trying to predict the first

few points of the target if 'an, + 11 didn't change much from Utn 1 ). As we

shall see. this is indeed what happens.

9
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Of course, Eq. (6) relies on a priori knowledge of the statistics of the

process s(n) (i.e., the background). To free ourselves from such require-

ments, we might consider an alternate performance measure of the form:
A tP

C[n ('1n4 + 11 -a[ndJ) (bi[n, + 1i -- [nl]) . (7)

4
A similar error was considered by Dove and Oppenheim who referred to

Eq. (7) as the coefficient change error.

With a bit of intuitive reasoning, we expect ýhat A[nI] will increase when

the sliding window first "hits" the target. It will stay high as long as tne tai get

lies under the window, and then should fall when the target no longer falls

under the window. It is reasonable then to filter the data in the opposite di-

rection and multiply forward and backward errors to form a new error cri-

terion. The resulting error should be high over only the target's extent. If

the same piocedure is appliedl with C[n, I we et.pect the resulting error to be

high only at the locations of the first and last target points.

One method of extending this algorithm to 2-D is to apply RLS to each

row (or each column). Of course, such a procedure is not "optimal" since

the correlation of a Z-D sequence s(n, mn is considered in only one direction,

thus apparently reducing thu effectiveness of the algorithm.

As before, we might consider an error formed from the product of for-

ward and backward errors (along rows or columns). With Aln ] the target

outline should be filled in, while with C[an4 only the target boundary (in one

direction) should be evident. We are currently pursuing this extension to 2-D,

Consider now an example in 1 -D where a background is generated by the

first-order difference equation given by

s(n) = 0.9 s(n - I) + w(n) (8)

and a target which replaces s(n) over some small interval is given by

g(n) - -0.9 g(n - i) + w(n) for n c [mO. rmn (9)

where w(n) is white noise.

To demonstrate the sensitivity of the RLS algorithm to small targets, we

"incorporate first a 4-point and next a I-point target within 9(n). A 20-point

o0



sliding window, the correct model order, and A[nl] were used in these 1-D

exaimples. Figures 4(a-d) and 5(a-d) illustrate the performance of the algo-

rithm in these two cases.
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Fig. 5. Detection of a I -point target by RLS: (a) a sequence
s(m) representing background and target, (b) forward error
(denoted by Ef(m)}, (c) background error (denoted by Eb(m)1,
and (d) product Elf(m) x Eb(m).
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